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On the stability of an axisymmetric plume 
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The linear stability equations for a round laminar thermal plume in a coflowing 
vertical stream have been solved numerically. Both symmetric and asymmetric 
disturbances have been considered for strengths of the forced flow varying between 
very weak and very strong. The parallel flow analysis confirms that the forced flow 
has a stabilizing effect. The upper branch of the neutral curve for sinuous disturbances 
is qualitatively like that of a round momentum jet. However, neither a critical 
Reynolds number nor a lower branch of the neutral curve was found. Non-parallel 
effects are discussed. 

1. Introduction 
The stability of certain axisymmetric flows, round jets and Poiseuille flow in 

particular, has been extensively studied, using both linear and nonlinear stability 
theory. The first theoretical study of the stability of axisymmetric free flows was 
carried out by Batchelor & Gill (1962), who considered the linear stability of jets in 
an inviscid fluid. They found that a thin momentum jet is unstable only to  sinuous 
disturbances i.e. those with unit azimuthal wavenumber. Burridge (1968,1970) made 
a comprehensive analytical and numerical attack on the corresponding viscous 
problem. He again used linear stability theory and confirmed the result of Batchelor 
& Gill that  there was instability only to the sinuous disturbance. Burridge’s 
calculations yielded a critical Reynolds number of 37.5 a t  a wavenumber of 0.43. 
There have been numerous other investigations, many of which were reviewed by 
Mollendorf & Gebhart (1973) in their numerical and experimental study of the 
vertical round jet with and without buoyancy. 

In  comparison to the jet problem, the related problem of the stability of the free 
convection flow above a point heat source has been neglected. The plume stability 
was first considered briefly by Mollendorf & Gebhart, who noted that their results 
concerning jets were applicable to an axisymmetric thermal plume with Prandtl 
number 2 ,  because the velocity and temperature base profiles were then identical with 
those for a non-buoyant jet. There does not appear to have been any further 
theoretical attack on this problem until Wakitani (1980) investigated, again nume- 
rically, for Prandtl numbers of 2 and 0.7. As above, Wakitani found instability only 
for the sinuous mode, but seemingly because of difficulties with convergence of his 
numerical scheme, neither a critical Grashof number nor a lower branch of the neutral 
curve was found. Fujii, Morioka & Suzaki (1972) and Schlien & Boxman (1979) 
described their experiments on the stability of an axisymmetric plume in water. 

Plume stability and transition are important questions in themselves. It is known 
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that  the charact,eristics of flow vary wide1 y between laminar and turbulent regimes 
and so it is important to understand each. Often in applications and in experiments 
i t  is desirable to preserve thc laminar nature of the plume. In  fact, the problem 
investigated in this paper originally arose when preliminary details of an experiment,? 
involving velocity measurements in a thermal plume, came to our attention. It seems 
that to stabilize an axisymmetric plume i t  requires only a small imposed external 
stream aligned with the axis of the plume. It is natural to enquire why and how this 
happens. It is plausible that a plume should be stabilized in this way, because i t  may 
be expected that, by so doing, the degree of inflexion is lessened. This, however, cannot 
be the complete story, since it is known from previous stability studies in free 
convection that there are two distinct mechanisms for instability. The first is 
hydrodynamical and is the one usually associated with inflexion points and with the 
Orr-Somerfieltl equation; the other is buoyancy. Thus in this paper we set out to 
examine the effects of an aligned uniform (coflowing) stream on the stability 
characteristics of a thermal plume. 

The basic flow for this problem was the subject of an investigation by Riley & Drake 
(1983). Here we first present details of the basic flow and then the linear stability 
equations. We discuss the eigenvalue problem, its solution and ramifications. Finally, 
we consider the balance of energy within the perturbation. The details of the 
numerical solutions are relegated to the Appendix. 

2. The basic flow 
The axisymmetric mixed convection flow results from a vertical uniform stream, 

of speed W, and a t  temperature T,, passing over a point heat source. To describe 
the flow, cylindrical polar coordinates ( r ,  #, z )  are employed, with the origin located 
at the heat source and with the z-axis pointing vertically upwards. r is the distance 
from the z-axis and q5 is the angular coordinate. Furthermore we introduce T as the 
temperature and V = ( I J ,  0, W) as the velocity vector, where U and W are the radial 
and vertical components, respectively. 

On taking the Boussinesq form of thc governing equations, they become 

a a 
-(rU)+-(rW) = 0, 
ar az (2.1) 

( 2 . 2 )  

i3T 2T 
ar az 

U--+ W- = K V T .  (2.4) 

Here p is the pressure, u the kinematic viscosity, K the thermal diffusivity, p the 
density, g the acceleration due to gravity and /3 the coefficient of cubical expansion. 
V2 denotes the Laplacian in the cylindrical coordinates (Y,  z). 

Symmetry about r = 0 gives, for z =!= 0, 

= 0 ,  
2T 

= 0,  - u=o, ~ 

2r 2r 
aw 

( 2 . 5 )  

f Unfortunately, the experiment was primarily ronrerned w i t h  the measurements of gas 
velocities and temperatures within the plume. and stability p u  S P  was not considered 
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whilst far away from the heat source the velocity and temperature must attain the 
same values as in the imposed flow, i.e. 

W+W,, T-tT, as r - tco.  (2.6) 

Finally, the heat flux across a sphere centred a t  the heat source must be equal to 
the strength of the source: 

JJS,,,:,, q‘n ds = Q ,  
(2.7) 

where n denotes the outward normal to the sphere, q the total heat-flux vector and 
Q is the strength of the heat source. 

On using tildes to denote quantities non-dimensionalized by use of a characteristic 
speed U*, length L* and temperature difference T* defined by 

where c p  denotes specific heat, attention is restricted to  the shear-layer region 
where y = T/$ is O(1) as 2 - t ~ .  The solutions to (2.1)-(2.7) have the following 
asymptotic expansions valid in this region : 

x’= ZF(y)+o(zi), 

g=  g-  1H(y) + O ( E - ~ )  as Z+ 03, 

where x’ is a (dimensionless) Stokes stream function such that 

and T- T, = T*8. 

The governing system for F and H is 

with 

(y(;))+12F($)’+yH= 0, 1 
(yH’)’+ 1 2 4 F H ) ’  = 0, J 

(2.9) 

(2.10) 

(2.11) 

FHdy = 1 .  J 
Here (T = v / K  is the Prandtl number and e = W,/U* is a measure of the strengths 
of the imposed flow relative to the natural convection. 

Solutions to the above system were found by Riley & Drake, who used a similarity 
variable proportional to r 2 / z  rather than r / z i  ; in this investigation, however. i t  proves 
more convenient to use the latter. 

I n  the case of no imposed flow (8 = 0) and CT = 1, a closed-form solution exists (Yih 
1977, chap. 8) :  

(2.12) 
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2 1 0 1 2 

FIGURE 1 .  The dimensionless velocity u' and temperature H for different s-values 

6 0 0.1 0.25 0.5 1 .0 2.0 5.0 

H(0) 8.000 7.708 7.313 6.848 6.390 6.128 6.023 

TABLE 1 .  The dimensionless centreline temperature for different a-values 

giving W =  ( 1 + q 2 ) - 2 .  (2.13) 

Here and in the rest of the paper, W denotes the dimensionless vertical velocity 
component, and we note that i t  has the same form as that for the momentum jet 
(see Batchelor & Gill, equation (1.5)). 

For e =+ 0 we solved (2.9) and (2.10) numerically using the procedure outlined in 
Riley & Drake. In  this paper we have restricted attention to  the case of v = 1 only. 
Figure 1 displays the graphs of H and W for e = 0, 0.5, 1,  2, and 5, whilst typical 
values of the dimensionless centerline temperature H(0)  are given in table 1 .  It is 
noteworthy that, for v = 1 only, 

3. The stability equations 
To investigate the stability of $he basic flow, we follow the usual practice in linear 

stlability theory of superimposing arbitrarily small perturbations to  the base flow 
velocities, pressure and temperature, and invoking the parallel flow approximation. 
After using the scales (2.8) to  non-dimensionalize the unsteady Boussinesq equations, 
the dimensionless perturbations are taken to have the form: 
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where ti, ...,I§ are functions of 7,  t is time, n is an integer and physical quantities 
correspond to the real part of complex functions. A temporal analysis is undertaken, 
so that the frequency o is taken to be complex, whilst y(Z) is taken to be real. On 
introducing the base flow plus perturbations given by (3.1) into the full non-dimen- 
sional equations and letting Z+ co with 7 fixed, we obtain after linearization 

(3.3) 

(3.4) 

1 
R D&+iW'ti = -ia$+-(FC+d),  (3.5) 

1 
(TR 

Dd+iHti = -F8, 

where 

Here a = z":dy/dz" denotes the dimensionless wavenumber and c = w&L*/aU* is a 
complex constant, whose real part represents dimensionless phase speed and whose 
imaginary part gives the growth rate. It should be stressed that (3.2)-(3.6) are 
obtained by invoking the parallel-flow approximation, which neglects all %dependence 
via 7 in the base flow and the perturbations, relative to the exponential %dependence 
eiy(t) in (3.1) - this follows from assuming that dy/dz" = O(E-4) as z"+ co. By neglecting 
the algebraic &dependence in obtaining (3.2)-(3.6) some terms of order R-' have been 
omitted from these equations. These terms, however, involve lower-order derivatives 
and so the retained viscous terms constitute the dominant terms in critical layer, 
whilst also allowing the full set of boundary conditions to be satisfied. 

By eliminating the pressure and introducing new dependent variables, we obtain 
from (3.2)-(3.6) 

9'W = i aR( (W-c )9 -9~W)@++an9Q+a 

(3.9) 

where 

icr 

11 
F0 = iaRa(W-c)O+-RH@, (3.10) 

d2 n2-a2y2 1 d 
f =  n2+u2r2,  9 --+ 

' -dv2  i j  ;&'\ 
(3.11) 

(3.12) 
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When n = 0, @ represents the amplitude of a Stokes stream function and 9 = 0. I n  
the case of asymmetric disturbances 9 is related to the radial component of vorticity. 

The conditions to be applied on (3.8)-(3.10) a t  7 = 0 depend on n. If n = 0 the 
perturbation motion is toroid-like with 

aw ap ao 
u=-=-=-= 0, 

a7 a7 a7 

whilst w = p = O = O  for n > l  

and u = v = 0  for 1 2 2 2 ,  

because the velocity, pressure and temperature are single-valued. Thus the conditions 
satisfied by 9, @ and 0 are 

f n  = 0). 

Furthermore, the perturbations must decay to zero as 7 + CO, giving 

(3.14) 
$2 -> 0 as q+co for n >  1. I 

4. The eigenvalue problem 

into four. 
When solving the differential equations (3.8)-(3.10), the domain [O, co) i s  divided 

( i )  [O, q,], (ii) Lv,, ~ m l ,  (iii) [ ~ m ,  ~ a l ,  [ ~ a ,  a), (4.1) 

where T~ < l;lm < va. I n  (i) the solution is determined as a power series satisfying 
(3.13), and in (iv) asymptotic solutions satisfying (3.14) are found in terms of modified 
Bessel functions. In  (ii) and (ii i)  a Runge-Kutta Merson procedure is used to integrate 
numerically thc equations from vs to qm and from qa to vm respectively. The initial 
conditions a t  7, and ya are given by evaluating the analytical solutions from regions 
(if and (iv) respectively. At vrn continuity in @, d@/dT, Y = BB, dY/dr/, 9, d9/dT, 
0 and dOld7 is used and the two numerical solutions matched. Thc condition for 
solvability of the resulting equations then generates an eigenvalue relation of the form 
G(G,  g ,  R, a, c) = 0. To satisfy this relation either 01 or c must be complex. We have 
taken c t o  be complex, i.c. c = c,+ic,, where rr is the phase speed and ac, the growth 
ratc of the disturbance. Further details concerning the methods of solution are given 
in the Appendix. I n  this section we now focus attention on aspects of the numerical 
results. 

We first verified the numerical scheme by recalculating the stability characteristics 
of a round momentum jet, with neither temperature nor imposed flow involved. 
Batchelor & Gill showed that the velocity distribution may be approximated by the 
form given in (2.13).  Our results confirmed those of Batchelor & Gill and of Burridge; 
our results may be more accurate than those of Burridgc. The results for the 
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F~GXJRE 2 .  The neutral curves in the (a ,  R)-plane for a momentum jet and for 
plumps with different c-values. 

asymmetric mode n = 1 are presented in figure 2 (the curve labelled ‘jet ’) and figure 
3. Figure 2 shows the neutral stability curve (c, = 0) in the (a ,  M)-plane for R up to 
20000 and a > 0.001. On the upper inviscid branch 

a+1.157, c,+O.621 as R+m, 

on the lower viscous branch 

aR-tCi.78 c,+O.O63 as R+co, 

whilst the critical values wc 1.e dctermiried as 

ac = 0.451, R, = 37.79, (c,)~ = 0.231. 

The form of the lower branch means that solutions do not tend to those of the 
Rayleigh equation, but t o  a boundary-layer type of approximation to thc stability 
equations, obtained by taking olR-tCi.78 as a+O (see Gill & Davey 1969). Moreover 
the type of lower-branch analysis of Smith (1879) is not really a tractable proposition 
as there would be a difficult numerical problem involved 

Figure 3 presents the curves of constant c,  and c,  in the (a ,  R)-plane. For large 12, 
the respective curves behave in much the same way, except for a small core with calosed 
curves of constant c,. The maximum values of c, lie inside this core, which mmns that 
the disturbances with the corresponding wavenumbers have their largest growth rate 
at a finite Reynolds number. Our results are essentially the same as those of Burridge 
and our numerical procedure is therefore confirmed. 

The mixed convection stability results for n = 1 are given in figures 2 ,  4, 5 and 
6. Figure 2 shows the neutral curve for no forced flow (e = 0) and for five different 
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FIGURE 3. Curves of constant c, and ci in the (a, R)-plane for the momentum jet. 

I '  I 1 1 , 1 

FIavm 1. Curves of constant c, and ci in the (a, R)-plane for the plume with B = 1.0. 
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R 

FIGURE 5. Curves of constant c, and ci in the (a,  R)-plane for the plume with 8 = 5.0. 

I 

*I 

'I I I I I I 

-* 1 I I I 1 I 

FIQURE 6. Neutrally stable eigenfunctions for E = 1.0. I I and ( ) denote amplitude and phase 
respectively. (a) R = 20.298, a = 0.80; ( b )  R = 1000, a = 2.2524. 
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& aa (c,)cJ ' l a  

0.0 1.4.57 0.621 0..51 9 
0.25 1.62 1 0.715 0.4 8!# 
0.50 1.830 0.362 0.451 
1 .o 2.170 1 ,240 0.380 
2.0 2.994 2.135 0.294 
*5.0 4.627 5.056 0.192 

TABLE 2. Thr  limits, for different ~-:-valnes, of waveniimber aq and phase spred ( c , ) ~ ,  as B+ m along 
the upper neutral branch. The values of qa,  the point where W = c,, are also displayed. 

strengths of forced flow. The main features arc the same for all the curves. There is 
an upper inviscid branch with the same characteristics as for the jet, that  is a and 
c,  tend to constants, a& and ( c , ) ~  say. as R+co. We also find that ( c , ) ~  = W ( q Q ) ,  
where yQ is the point in the fluid a t  which 

has a maximum (see table 2). This result is not surprising since the thermal coupling 
vanishes as R A  CO, and we should expect to recover the result of Batchelor & Gill 
for inviscid jets. 

Away from the upper branch, however, the neutral curves have little in common 
with the neutral curve for the jet. \.lie find no critical point : R is strictly decreasing 
as a decreases down to a = 0.001 (the lower limit of CL in our computations). Xow 
in our analysis we have employed the parallel-flow approximation, which is not a good 
approximation a t  small Reynolds numbers.? Thus our results cannot be regarded as 
valid quantitatively at the lower Reynolds numbers. Pera & Gebhart (1971) also 
found this in their study of the stability of two-dimensional thermal plumes. For that 
problem, however, Hieber & Nash (1975) were apparently able to find a critical 
Reynolds number by auoounting for non-parallel effects in an asymptotic ( R  % 1 )  
analysis. 

We havc limited thc presentation of the constant c, and ci curves to the cases of 
E = 1 .O and E = 5.0 (figures 4 and 5 rcspcctivcly). The curves for amplified disturbances 
are quitc different from the neutral curve as a tO. The behaviour is much thc same 
as for the jet problem: for ci not too small 

aR1+8 + constant as IZ + co , 

wherc S $ 1 .  
Figurc 6 displays the amplitude and phase of the velocity components for neutral 

disturbances with c = 1 . 0  and a t  Reynolds numbers of (u )  20.3 and (bf 1000. (The 
temperature is not shown hecause 8 has a similar behaviour to G.) At the smaller 
Reynolds number the velocitics decay slowly from their maximum values. This is in 
sharp contrast with the largo-Rcynoltls-numbe~ behaviour, where the changes with 
q arc much more rapid. I n  this latter case, v" and i Z  have maxima at a distance from 
tJhe centrelinc olosc to the point where W = c. Furthermore, changes in the phases 
o f 6  and G (and 8) are localized ncar th i s  point. The tendency towards phase jumps 
in 6, iZ and 0, but not in .ii, for increasing values of R may be seen from (3.8)-(3.10). 
t In the mixed-convection rase, Graxhof number would perhaps be a morr accurate description 

of R. 
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I I I I I I I ' lo  I 

R 
FIGURE 7 .  The ratios ( M ) / ( D )  and ( B ) / ( D )  as functions of R for neutral disturbances. 

On letting R-t co, (3.8) yields a regular solution for @, but Q and 0 become singular 
a t  ye. The eigenfunctions for other €-values have a very similar behaviour. 

For the symmetric case (n = 0 )  we found that all disturbances are damped, a t  least 
in the range of wavenumber considered. It is plausible that buoyancy-induced 
instability exists for very small a, but this is of little physical interest since the 
amplification rates are probably much larger for the asymmetric disturbances of 
moderate wavenumber. This remark regarding the n = 0 modes being stable also 
applies for modes with n > 1 .  

5. The perturbation energy 
I n  order to gain some insight into the relative importance of mechanically driven 

and buoyancy-driven instabilities, the energy balance within a sinuous disturbance 
is now examined. 

The derivation of the equation governing the disturbance energy is straightforward 
(see e.g. Nachtsheim 1963, p. 10). On omitting the details, it takes the form 

2aci(E) = ( M ) + ( B ) - ( D ) ,  15.1) 

where 

(( )) = jm y( )dy, 0 = (%$,&)> 
0 

and the overbars denote complex conjugation. 
2aci(E) represents the rate of change of the kinetic energy of the disturbance, ( M )  

the rate of transfer of kinetic energy from the mean flow to the disturbance, ( B )  the 
rate of gain of disturbance energy from potential energy (via the work done by 



182 D. X. Riley and M .  Tveitereid 
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0.4 0.8 9 0 0.4 0.8 

FIGURES. M ,  Band Dasfunctionsofvfors = 1.0, andforfivedifferentneutrallystable (a, R)-values: 
(a )  (0.1, 10.137); ( b )  (1.0, 26.303); (c)  (1.8982, 100); ( d )  (2.4431, 400); ( e )  (2.2524, 1000). 

buoyancy forces), and (D) the rate of viscous dissipation. The dissipation term is 
always negative, so, if the sum of ( M )  and (B) is greater than ( D ) ,  the right-hand 
side of (5.1) is positive, leading to instability. The left-hand side is zero for neutral 
disturbances, which is the case we now consider. 

Figure 7 displays ( M ) / ( D >  and (B)/(D) as functions of the Reynolds number 
for various e-values. When ( M )  is greater than ( B ) ,  the transfer of kinetic energy 
from the basic flow dominates the process of conversion of potential energy, and vice 
versa. At small and moderate Reynolds numbers the instability is mainly of thermal 
origin, whereas for larger values i t  is mechanical. We note that ( B ) / ( D ) + O  as 
R+W. 

Furthermore, in order to study where the instability occurs, M ,  Band D are plotted 
as functions of 7 for different Reynolds numbers in figure 8. I n  this figure e = 1.0, 
but again the behaviour is similar for other e-values. The maximum values of M and 
B are always a t  some distance from the centreline 7 = 0, whilst the dissipation D is 
largest a t  7 = 0 for small and moderate Reynolds numbers, and away from 7 = 0 for 
large R. Moreover in this latter case, the maximum values of M ,  B and D coincide 
with those of the disturbance velocities, i.e. a t  the point where W = c .  

6. Discussion 
The original purpose of this investigation was to explain the stabilization of a plume 

by the introduction of a coflowing external stream. From a physical point of view 
the reasons for the stabilization may be found in figure 1. Two features are evident 
as the strength of the external flow increases: ( i )  the basic velocity profile flattens 
and (ii) the basic temperature difference across the plume decreases. Thus the local 
vorticity and the local potential energy in the plume are reduced by the introduction 
of the external stream. However, because of non-parallel-flow effccts, the theoretical 
description is not complete. Figure 2 shows the difficulty clearly: we have superposed 
the curves a& = 8 (jet) and aR = 12 (plume with or without external stream), which 
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are curves representing the locus of points in the (a ,  K)-plane where the wavelength 
of the disturbance and the height above the source are of the same ordcr. For our 
analysis to be valid, we should consider only dist,urbanws of much shorter wave- 
lengths than the height. This then shows the limitations of the approximation of 
parallel flow. It may be possible to extend the range of validity of our results by the 
type of analysis engaged in by Hieber & Nash or the more complete analyses of Smith 
and, more recently, Goldstein (1983). An encouraging aspect of our results (see e.g. 
figures 4 and 5) is that there does not appear to be any critical layer in the region 
of non-validity. However, also the Reynolds number is quite low, and so the use of 
asymptotic analysis for large values of the Reynolds number seems inappropriate. 
To mitigate this, note that the evidence concerning non-parallel effects is that they 
tend to stabilize, leading to some increase in the critical Reynolds number. As an 
example of a stabilizing non-parallel effect, we may cite the assumed temperature 
profile. In  the parallel flow analysis it is taken to be independent of z ,  but. according 
to the similarity solution, i t  actually decreases like 2-l. 

Finally, it is interesting to note that the Reynolds number is proportional to 2:. 
Thus, for fixed wavenumber, the 'stable length' of the plume is quadrupled, if the 
corresponding critical Reynolds number is doubled by the stabilizing forced flow. 

The experimental work on this problem is not available on the open literature and 
so comparison with experiment is not possible here. 

The authors wish to express their gratitude to Professor Philip Drazin for many 
stimulating discussions on this problem and for comments on the draft of this paper. 
M.T. also wishes to express his gratitude for the hospitality of the Vniversity of 
Bristol and to  acknowledge support from the University of Oslo and NATO (through 
NTNF, Norway). 

Appendix. The numerical solution of the stability problem 
I n  this section results needed for and details of the numerical solution of (3 .8)-(3.10)  

with the boundary conditions (3 .13)  and (3 .14 )  are presented. It is convenient to 
transform ( 3 . 8 )  into two second-order equations by introducing Y = 9@, giving 

9@ = Y,  ( 3 . 8 ~ )  

G3Y = iaR(W-c) !P- iaR(91W)@+2anB2+a v-+- 0. (3 .8b )  i iv 2;21 
A . l .  dsyrnpfotic solutions for  E [qs, a), 'la % 1 

From figure 1 we see that It'-.€, W - + O  and H -0 as v-+  CO. When it' = c and the 
terms involving QIW, W" and H are dropped from ( 3 . 8 b ) ,  (3.9) and (3 .10 ) ,  four 
independent solutions satisfying the conditions at 00 are 

= avKk(aq), !q = Ql = 0, = 0, (A 1) 

(A 2 )  
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Q4 = 

< =  
Here p is t,he root of or2$ - i a R ( ~ - c )  with positive real part, and K ,  is the modified 
Bessel function of order YL. The general solution for 7 >, qa is of the form 

4 

(@, y> 9 7 0 )  = Z Aj(@j> q, Qj, @ j ) ,  (A 5 )  
j = 1  

where A , ,  . . . , A, arc constants to be determined. 

A.2.  LSeries solutions f o r  7 E LO, 7,], 7, 4 1 

Power-series solutions to (3 .8a,b)-(3.10)  satisfying the conditions at  7 = 0 exist in 
terms of $. Though thesc may be found for all values of n, we shall restrict the 
present)ation to n = 1.  

The base flow velocity and temperature Wand H have series convergent for 17) < 1 : 

( W , H )  = I: (W,, H j ) v 2 j ,  
j = o  

Hj = ( -1 ) '3 ( j+ l )U+2) .  

whcre, for c = 0, 

W, = ( - - l ) 'O+l) ,  

When c + 0 the coefficients "ti and H j  are determined numerically. On taking into 
account the conditions (3.13),  the series for @, Y,  0 and 0 may be written 

m 

(@, Y, Q, 0) = Z (al ,  h,, d j ,  h j )  723p13 

where the differential equations yicld rewrrence relations for the coefficients in terms 

Four independent solutions ( & j ,  q, a3, G3), j = 1 ,  .. ., 4, are generated by taking 
a, = a,,, b, = SZl ,  d, = 8,, and h, = Sa3, where S is the Kronecker delta. The general 
solution for 7 < qS may then be written 

j = 1  

of a,, ...) h,. 

where B,, ..., H ,  are cwnstants to be determined. 

A.3. Numrriral integration f r o m  qS to y,,, and f r o m  ?la to v,,, 
Equations (3.80,6)-(3.10) may bc writtrn in thc tquivalent form 

Y ' = A Y ,  

where A is a square matrix of order 8 and 

Y = (@, @', Y ,  Y , Q ,  Q', 0, 0'). 

with the prime denoting difierentiation with respect to 7 .  
Using the serics solutions from gA.2. (A 7)  may be intcyqatctl from l;ls to 'I,,, to giw 

4 



Stability of an  axisymmetric plume in a uniform stream 185 

E 71s 3rn rla Nsrn *Vam 

0 0.1 1 .0 10.0 3 19 
0.25 0 1  1 .o 5.0 3 9 
0.50 0.1 1 .o 3.50 5 1 1  
1 .0 0. I 1 .0 3.00 5 9 
2.0 0.01 0.50 1.75 3 6 
5.0 0 01 0.25 1.25 5 17 

TABLE 3. The values of qs ,  7, and va for different €-values. N,,  and A’&, give the maximum number 
of orthonormalizations in the intervals [vs, 3,] and [v,,,, y,] respectively. 

and similarly, using the asymptotic solutions from SA.1 and integrating from ya to 
qm gives 

4 

Y =  C A j $ .  
j = 1  

Here the constants A j  and Bi are as in (A 5) and (A 6). Assuming continuity in Y 
a t  ym yields the relation G(e, u? R, a, c) = 0 for solvability. The secant method is then 
used t o  determine the eigenvalue c for given values of e ,  a and R .  

A.4. Orthonormalization 

The local solutions for y E Ly,, y,] are composed of terms of the form exp ( +_ a1 y) and 
exp (+Ply) ,  where, in general, ]PI[ % lall. Therefore when integrating from ys to ym 
the exp (pq)-terms very soon dominate the other terms, giving dependent solutions. 
To avoid this, the four solutions are orthonormalized a t  equally spaced points ys, 
ysl, ys2, . . . , qm. Similar considerations apply for the integration from ya to ym. In  table 
3 the maximum number of orthonormalization points in the calculations are 
displayed; the number depends on e ,  R and a. 
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