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On the stability of an axisymmetric plume
in a uniform stream
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The linear stability equations for a round laminar thermal plume in a coflowing
vertical stream have been solved numerically. Both symmetric and asymmetric
disturbances have been considered for strengths of the forced flow varying between
very weak and very strong. The paralle] low analysis confirms that the forced flow
has a stabilizing effect. The upper branch of the neutral curve for sinuous disturbances
is qualitatively like that of a round momentum jet. However, neither a critical
Reynolds number nor a lower branch of the neutral curve was found. Non-parallel
effects are discussed.

1. Introduction

The stability of certain axisymmetric flows, round jets and Poiseuille flow in
particular, has been extensively studied, using both linear and nonlinear stability
theory. The first theoretical study of the stability of axisymmetric free flows was
carried out by Batchelor & Gill (1962), who considered the linear stability of jets in
an inviscid fluid. They found that a thin momentum jet is unstable only to sinuous
disturbances i.e. those with unit azimuthal wavenumber. Burridge (1968, 1970) made
a comprehensive analytical and numerical attack on the corresponding viscous
problem. He again used linear stability theory and confirmed the result of Batchelor
& Gill that there was instability only to the sinuous disturbance. Burridge’s
calculations yielded a critical Reynolds number of 37.5 at a wavenumber of 0.43.
There have been numerous other investigations, many of which were reviewed by
Mollendorf & Gebhart (1973) in their numerical and experimental study of the
vertical round jet with and without buoyancy.

In comparison to the jet problem, the related problem of the stability of the free
convection flow above a point heat source has been neglected. The plume stability
was first considered briefly by Mollendorf & Gebhart, who noted that their results
concerning jets were applicable to an axisymmetric thermal plume with Prandtl
number 2, because the velocity and temperature base profiles were then identical with
those for a non-buoyant jet. There does not appear to have been any further
theoretical attack on this problem until Wakitani (1980) investigated, again nume-
rically, for Prandtl numbers of 2 and 0.7. As above, Wakitani found instability only
for the sinuous mode, but seemingly because of difficulties with convergence of his
numerical scheme, neither a critical Grashof number nor a lower branch of the neutral
curve was found. Fujii, Morioka & Suzaki (1972) and Schlien & Boxman (1979)
described their experiments on the stability of an axisymmetric plume in water.

Plume stability and transition are important questions in themselves. It is known

1 Present address: Adger College of Engineering, AID-4890 Grimstad, Norway.



172 D. S. Riley and M. Teitereid

that the characteristics of flow vary widely between laminar and turbulent regimes
and so it is important to understand each. Often in applications and in experiments
it is desirable to preserve the laminar nature of the plume. In fact, the problem
investigated in this paper originally arose when preliminary details of an experiment,
involving velocity measurements in a thermal plume, came to our attention. It seems
that to stabilize an axisymmetric plume it requires only a small imposed external
stream aligned with the axis of the plume. It is natural to enquire why and how this
happens. It is plausible that a plume should be stabilized in this way, because it may
be expected that, by so doing, the degree of inflexion is lessened. This, however, cannot
be the complete story, since it is known from previous stability studies in free
convection that there are two distinct mechanisms for instability. The first is
hydrodynamical and is the one usually associated with inflexion points and with the
Orr-Somerfield equation; the other is buoyaney. Thus in this paper we set out to
examine the effects of an aligned uniform (coflowing) stream on the stability
characteristics of a thermal plume.

The basic flow for this problem was the subject of an investigation by Riley & Drake
(1983). Here we first present details of the basic flow and then the linear stability
equations. We discuss the eigenvalue problem, its solution and ramifications. Finally,
we consider the balance of energy within the perturbation. The details of the
numerical solutions are relegated to the Appendix.

2. The basic flow

The axisymmetric mixed convection flow results from a vertical uniform stream,
of speed W, and at temperature 7T, passing over a point heat source. To describe
the flow, cylindrical polar coordinates (7, ¢, z) are employed, with the origin located
at the heat source and with the z-axis pointing vertically upwards. r is the distance
from the z-axis and ¢ is the angular coordinate. Furthermore we introduce 7' as the
temperature and ¥V = (U, 0, W) as the velocity vector, where / and W are the radial
and vertical components, respectively.

On taking the Boussinesq form of the governing equations, they become

0 d

= 2 (rW) = 2.

= () + 5 (W) = 0, 2.1)
U AU 1dp, o, ..

oW W 13p

4 2 —
U+ W paz+”v W+gp(T—T.,), (2.3)
oT T
J — _—= 2 ¢
Us +Wo =V (2.4)

Here p is the pressure, v the kinematic viscosity, « the thermal diffusivity, p the
density, ¢ the acceleration due to gravity and £ the coefficient of cubical expansion.
V? denotes the Laplacian in the cylindrical coordinates (r, z).
Symmetry about » = 0 gives, for z + 0,
ow oT
v=0 <=0 < -o, 2.5)

or or

t Unfortunately, the experiment was primarily concerned with the measurements of gas
velocities and temperatures within the plume, and stability per se was not considered.
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whilst far away from the heat source the velocity and temperature must attain the
same values as in the imposed flow, i.e.

W->Ww,, T->T, as r—>oo. (2.6)

Finally, the heat flux across a sphere centred at the heat source must be equal to

the strength of the source:
H g-ndS =@, (2.7
sphere

where n denotes the outward normal to the sphere, g the total heat-flux vector and
) is the strength of the heat source.

On using tildes to denote quantities non-dimensionalized by use of a characteristic
speed U*, length L* and temperature difference 7* defined by

PgQ )é <28811:pc v3>é Q
Ur = (P9 ) o (255000 Y . S— )
<21tpcpu ’ g9pQ » T 24mpc, v L*’ @8)

where ¢, denotes specific heat, attention is restricted to the shear-layer region
where n = /2% is O(1) as Z->00. The solutions to (2.1)~(2.7) have the following
asymptotic expansions valid in this region:
S =zF@p)+0(z),
6 =z:"Hn)+0(Ed as Z-o00,
where § is a (dimensionless) Stokes stream function such that
~ o8 . f
FU = &, FWw = oF
and T—T, = T*6.

(2.9)

The governing system for F and H is

<" (%)) + 12F<%/>/+77H =0 (2.10)

(nH') + 120 (FH)' = 0,
. . (FY ,
with lim <—> = F(0) = H'(0) =0,
70 77

4

F
7—>e, H->0 as 9—o0, (2.11)

o0
J F'Hdy =1.
Q
Here o = v/k is the Prandtl number and ¢ = W_/U* is a measure of the strengths
of the imposed flow relative to the natural convection.

Solutions to the above system were found by Riley & Drake, who used a similarity
variable proportional to 72/z rather than r/2}; in this investigation, however. it proves
more convenient to use the latter.

In the case of no imposed flow (¢ = 0) and o = 1, a closed-form solution exists (Yih
1977, chap. 8):

F ,'72 2 3
~arm 1= () (212
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Fiaure 1. The dimensjonless velocity W and temperature H for different e-values.

€ 0 0.1 0.25 0.5 1.0 2.0 5.0
H(0) 8.000 7.708 7.313 6.848 6.390 6.128 6.023

TaBLE 1. The dimensionless centreline temperature for different e-values

giving W=+~ (2.13)

Here and in the rest of the paper, W denotes the dimensionless vertical velocity
component, and we note that it has the same form as that for the momentum jet
(see Batchelor & Gill, equation (1.5)).

For € + 0 we solved (2.9) and (2.10) numerically using the procedure outlined in
Riley & Drake. In this paper we have restricted attention to the case of o = 1 only.
Figure 1 displays the graphs of H and W for ¢ =0, 0.5, 1, 2, and 5, whilst typical
values of the dimensionless centerline temperature H(0) are given in table 1. It is
noteworthy that, for o = 1 only,

lim il = (1 +e2).
7—0 n

3. The stability equations

To investigate the stability of the basic flow, we follow the usual practice in linear
stability theory of superimposing arbitrarily small perturbations to the base flow
velocities, pressure and temperature, and invoking the parallel low approximation.
After using the scales (2.8) to non-dimensionalize the unsteady Boussinesq equations,
the dimensionless perturbations are taken to have the form:

~

(@, %, @, p.0) = (4.9, @, p, 0) exp {i(nd + y(5) —wt)}, (3.1)
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where 4, ...,0 are functions of 7, ¢ is time, n is an integer and physical quantities
correspond to the real part of complex functions. A temporal analysis is undertaken,
so that the frequency w is taken to be complex, whilst y(2) is taken to be real. On
introducing the base flow plus perturbations given by (3.1) into the full non-dimen-
sional equations and letting Z— oo with 7 fixed, we obtain after linearization

<i+1)a+%+aw=o, (3.2)
dyg 7 ]
L_dp 1/ 1 2nA>
Du—1d77+R<./u 772u 7721) , (3.3)
in 1 1 2n
Dﬁ=——‘+—<9’ﬁ——ﬁ——a>, 3.4
7" R "o (3:4)
Dﬁ)+iW’d=—iaﬁ+%(ﬂ'ﬁ)+9), (3.5)
1
iH% = — .
DO+iH G UR.%‘, (3.6)
where
2 1d =
= 54 = ] — T = e 2
R=12%:, D=1ia(W—c¢), I d’l]2+77d7] o al. (3.7)

Here a = 2dy/d% denotes the dimensionless wavenumber and ¢ = wz:L*/aU* is a
complex constant, whose real part represents dimensionless phase speed and whose
imaginary part gives the growth rate. It should be stressed that (3.2)—(3.6) are
obtained by invoking the parallel-flow approximation, which neglects all Z-dependence
via 77 in the base flow and the perturbations, relative to the exponential Z-dependence
el7® in (3.1) — this follows from assuming that dy/dZ = O(Z %) as Z—> c0. By neglecting
the algebraic 2-dependence in obtaining (3.2)—(3.6) some terms of order R~! have been
omitted from these equations. These terms, however, involve lower-order derivatives
and so the retained viscous terms constitute the dominant terms in critical layer,
whilst also allowing the full set of boundary conditions to be satisfied.

By eliminating the pressure and introducing new dependent variables, we obtain
from (3.2)—(3.6)

2
DD =iaR{(W—c)P—-9D, W}(D+2am.@.(2+a{77 ad—+2—7}—} 0, (3.8
n 7
2Q = iadit(w—c)g—’—f{‘—]E W’+2T“@}¢+§@, (3.9)
il i i
T 6O = iaRo(W—c) @+%RH’¢, (3.10)
where
2 2 __ ~2,2
7= n2+ay?, @1_;2 n ~0L77 ldi
i 7 y i ndy 5.11)
9291_%’ P —g 4a~77 1d
i 7 7ndy
In the above,
and—n .
Q) =T o)y =qa, O =6. (3.12)
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When n = 0, @ represents the amplitude of a Stokes stream function and 2 = 0. In
the case of asymmetric disturbances £ is related to the radial component of vorticity.

The conditions to be applied on (3.8)—(3.10) at # = 0 depend on #. If n = 0 the
perturbation motion is toroid-like with

_dw_%p _90_
T Ty y
whilst w=p=0=0 for n=1

and wu=v=0 for n=2,

because the velocity, pressure and temperature are single-valued. Thus the conditions
satisfied by 2, @ and & are

lim d =lim (qjl)/ =6'(0)=0 (n=0),

>0 U 70

lim (qb'—@) = lim 7 (n® —2®) = Q(0)
7

I
2
e
I
=
B
\Y

70 >0

Furthermore, the perturbations must decay to zero as 5 — 00, giving

9—»0, (D»O, ®—~>0 as gp—>w for n>=0,
" (3.14)

7
72—-0 as n—o for n=1.

4. The eigenvalue problem

When solving the differential equations (3.8)-(3.10), the domain [0, o0) is divided
into four:

(D) [0,75), (1) (75, 7). (1) [P, 7al, (V) [74, 0), (4.1)

where 7, < 7, <7, In (i) the solution is determined as a power series satisfying
(3.13), and in (iv) asymptotic solutions satisfying (3.14) are found in terms of modified
Bessel functions. In (ii) and (iii) a Runge-Kutta Merson procedure is used to integrate
numerically the equations from y, to #,, and from %, to », respectively. The initial
conditions at 7, and 7, are given by evaluating the analytical solutions from regions
(i) and (iv) respectively. At 9., continuity in @, d@/dy, ¥ = 2@, d¥/dy, Q, d2/dy,
©® and dO/dy is used and the two numerical solutions matched. The condition for
solvability of the resulting equations then generates an eigenvalue relation of the form
Oe,o, R, a,c¢) = 0. To satisfy this relation either a or ¢ must be complex. We have
taken ¢ to be complex, i.e. ¢ = ¢, +i¢;, where ¢, is the phase speed and ac; the growth
rate of the disturbance. Further details concerning the methods of solution are given
in the Appendix. In this section we now focus attention on aspects of the numerical
results.

We first verified the numerical scheme by recalculating the stability characteristics
of a round momentum jet, with neither temperature nor imposed flow involved.
Batchelor & Gill showed that the velocity distribution may be approximated by the
form given in (2.13). Our results confirmed those of Batchelor & Gill and of Burridge ;
our results may be more accurate than those of Burridge. The results for the
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FicurE 2. The neutral curves in the (a, R)-plane for a momentum jet and for
plumes with different ¢-values.

asymmetric mode » = 1 are presented in figure 2 (the curve labelled ‘jet’) and figure
3. Figure 2 shows the neutral stability curve (¢; = 0) in the (a, £)-plane for R up to
20000 and « > 0.001. On the upper inviscid branch

a—>1457, ¢,—~0.621 as R->o0,
on the lower viscous branch
alR—->6.78 ¢, —~0.063 as R-o0,

whilst the critical values were determined as
a, = 0.451, R, =3779, (c).=0.231

The form of the lower branch means that solutions do not tend to those of the
Rayleigh equation, but to a boundary-layer type of approximation to the stability
equations, obtained by taking aR —6.78 as a -0 (see Gill & Davey 1969). Moreover
the type of lower-branch analysis of Smith (1979) is not really a tractable proposition
as there would be a difficult numerical problem involved.

Figure 3 presents the curves of constant ¢, and ¢, in the (a, R)-plane. For large I,
the respective curves behave in much the same way, except for a small core with closed
curves of constant ¢;. The maximum values of ¢; lie inside this core, which means that
the disturbances with the corresponding wavenumbers have their largest growth rate
at a finite Reynolds number. Our results are essentially the same as those of Burridge
and our numerical procedure is therefore confirmed.

The mixed convection stability results for » = 1 are given in figures 2, 4, 5 and
6. Figure 2 shows the neutral curve for no forced flow (¢ = 0) and for five different
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Ficure 3. Curves of constant ¢, and ¢; in the (a, R)-plane for the momentum jet.
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Figure 4. Curves of constant ¢, and ¢; in the («, B)-plane for the plume with ¢ = 1.0.
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Fi6URE 5. Curves of constant ¢, and ¢, in the («, R)-plane for the plume with ¢ = 5.0.
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Fioure 6. Neutrally stable eigenfunctions for ¢ = 1.0. | | and ( ) denote amplitude and phase
respectively. (a) B = 20.298, & = 0.80; (b) R = 1000, « = 2.2524.
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€ Xy P g
0.0 1.457 0.621 0.519
0.25 1.621 0.715 0.489
0.50 1.830 0.862 0.451
1.0 2.270- 1.240 0.380
2.0 2.994 2.135 0.294
5.0 4.627 5.056 0.192

TaBLE 2. The limits, for different e-values, of wavenumber «, and phase speed (¢,) ¢, as R — o along
the upper neutral branch. The values of 7, the point where W = ¢, are also displayed.

strengths of forced flow. The main features arc the same for all the curves. There is
an upper inviscid branch with the same characteristics as for the jet, that is & and
¢, tend to constants, @g and (c.), say, as R—>00. We also find that (c;)q = W(ng),
where 7 is the point in the fluid at which

Q) = %Wz—;

ne+an
has a maximum (see table 2). This result is not surprising since the thermal coupling
vanishes as R— oo, and we should expect to recover the result of Batchelor & Gill
for inviscid jets.

Away from the upper branch, however, the neutral curves have little in common
with the neutral curve for the jet. We find no critical point: R is strictly decreasing
as a decreases down to a = 0.001 (the lower limit of « in our computations). Now
in our analysis we have employed the parallel-flow approximation, which is not a good
approximation at small Reynolds numbers.t Thus our results cannot be regarded as
valid quantitatively at the lower Reynolds numbers. Pera & Gebhart (1971) also
found this in their study of the stability of two-dimensional thermal plumes. For that
problem, however, Hieber & Nash (1975) were apparently able to find a critical
Reynolds number by accounting for non-parallel effects in an asymptotic (R » 1)
analysis.

We have limited the presentation of the constant ¢, and ¢; curves to the cases of
e = 1.0ande = 5.0 (figurcs 4 and 5 respectively). The curves for amplified disturbances
arc quite different from the neutral curve as a->0. The behaviour is much the same
as for the jet problem: for ¢; not too small

aR'* > constant as R-> o0,

where & < 1.

Figure 6 displays the amplitude and phase of the velocity components for neutral
disturbances with ¢ = 1.0 and at Reynolds numbers of () 20.3 and (b) 1000. (The
temperature is not shown because 6 has a similar behaviour to @.) At the smaller
Reynolds number the velocities decay slowly from their maximum values. This is in
sharp contrast with the large-Reynolds-number behaviour, where the changes with
7 are much more rapid. In this latter case, ¥ and @ have maxima at a distance from
the centreline close to the point where W = ¢. Furthermore, changes in the phases
of # and  (and §) are localized near this point. The tendency towards phase jumps
in #, @ and @, but not in 4, for increasing values of B may be seen from (3.8)—(3.10).

T In the mixed-convection case, Grashof number would perhaps be a more accurate description
of R.
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F1cUre 7. The ratios (M) /(D) and {(B)/{D) as functions of R for neutral disturbances.

On letting B> 00, (3.8) yields a regular solution for @, but £ and & become singular
at 7. The eigenfunctions for other e-values have a very similar behaviour.

For the symmetric case (n = 0) we found that all disturbances are damped, at least
in the range of wavenumber considered. It is plausible that buoyancy-induced
instability exists for very small «, but this is of little physical interest since the
amplification rates are probably much larger for the asymmetric disturbances of
moderate wavenumber. This remark regarding the n = 0 modes being stable also
applies for modes with n > 1.

5. The perturbation energy

In order to gain some insight into the relative importance of mechanically driven
and buoyancy-driven instabilities, the energy balance within a sinuous disturbance
is now examined.

The derivation of the equation governing the disturbance energy is straightforward
(see e.g. Nachtsheim 1963, p. 10). On omitting the details, it takes the form

200, EY = {M>+{B)>—<{D>, (5.1)
where _ 3
. W’ (i — i) O — O
— 1 2 — = ——
E=zlo M 5 P=ar
I S 1 R TN Az}
D= R{\d?] +2a E'+772(|w| + 2|14 +9%) ¢,

il

<) b

7( ) dy, (4,9,%),

J‘w
0
and the overbars denote complex conjugation.

2ac;{ E) represents the rate of change of the kinetic energy of the disturbance, (M)
the rate of transfer of kinetic energy from the mean flow to the disturbance, (B the
rate of gain of disturbance energy from potential energy (via the work done by
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1 1
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Fraure 8. M, Band D asfunetions of 5 fore = 1.0, and for five different neutrally stable («, R)-values:
(@) (0.1, 10.137); (b) (1.0, 26.303); (c) (1.8982, 100); (d) (2.4431, 400): (e) (2.2524, 1000).

buoyaney forces), and {D) the rate of viscous dissipation. The dissipation term is
always negative, so, if the sum of (M) and {B) is greater than (D}, the right-hand
side of (5.1) is positive, leading to instability. The left-hand side is zero for neutral
disturbances, which is the case we now consider.

Figure 7 displays {(M)>/{D) and {B)/{D) as functions of the Reynolds number
for various e-values. When (M) is greater than {B), the transfer of kinetic energy
from the basic flow dominates the process of conversion of potential energy, and vice
versa. At small and moderate Reynolds numbers the instability is mainly of thermal
origin, whereas for larger values it is mechanical. We note that (B)/{D>—0 as
R— .

Furthermore, in order to study where the instability occurs, M, B and D are plotted
as functions of 3 for different Reynolds numbers in figure 8. In this figure ¢ = 1.0,
but again the behaviour is similar for other e-values. The maximum values of M and
B are always at some distance from the centreline 7 = 0, whilst the dissipation D is
largest at 9 = O for small and moderate Reynolds numbers, and away from = 0 for
large R. Moreover in this latter case, the maximum values of M. B and D coincide
with those of the disturbance velocities, i.e. at the point where W = c.

6. Discussion

The original purpose of this investigation was to explain the stabilization of a plume
by the introduction of a coflowing external stream. From a physical point of view
the reasons for the stabilization may be found in figure 1. Two features are evident
as the strength of the external flow increases: (i) the basic velocity profile flattens
and (ii) the basic temperature difference across the plume decreases. Thus the local
vorticity and the local potential energy in the plume are reduced by the introduction
of the external stream. However, because of non-parallel-flow effects, the theoretical
description is not complete. Figure 2 shows the difficulty clearly: we have superposed
the curves aR = 8 (jet) and a R = 12 (plume with or without external stream), which
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are curves representing the locus of points in the (a, R)-plane where the wavelength
of the disturbance and the height above the source are of the same order. For our
analysis to be valid, we should consider only disturbances of much shorter wave-
lengths than the height. This then shows the limitations of the approximation of
parallel flow. It may be possible to extend the range of validity of our results by the
type of analysis engaged in by Hieber & Nash or the more complete analyses of Smith
and, more recently, Goldstein (1983). An encouraging aspect of our results (see e.g.
figures 4 and 5) is that there does not appear to be any critical layer in the region
of non-validity. However, also the Reynolds number is quite low, and so the use of
asymptotic analysis for large values of the Reynolds number seems inappropriate.
To mitigate this, note that the evidence concerning non-parallel effects is that they
tend to stabilize, leading to some increase in the critical Reynolds number. As an
example of a stabilizing non-parallel effect, we may cite the assumed temperature
profile. In the parallel flow analysis it is taken to be independent of z, but, according
to the similarity solution, it actually decreases like z™1.

Finally, it is interesting to note that the Reynolds number is proportional to zi.
Thus, for fixed wavenumber, the ‘stable length’ of the plume is quadrupled, if the
corresponding critical Reynolds number is doubled by the stabilizing forced flow.

The experimental work on this problem is not available on the open literature and
80 comparison with experiment is not possible here.

The authors wish to express their gratitude to Professor Philip Drazin for many
stimulating discussions on this problem and for comments on the draft of this paper.
M.T. also wishes to express his gratitude for the hospitality of the University of
Bristol and to acknowledge support from the University of Oslo and NATO (through
NTNF, Norway).

Appendix. The numerical solution of the stability problem

In this section results needed for and details of the numerical solution of (3.8)—(3.10)
with the boundary conditions (3.13) and (3.14) are presented. It is convenient to
transform (3.8) into two second-order equations by introducing ¥ = 2@, giving

20 =, (3.8a)

d 2n?
DY = iaR(W—c) Y—iaR(D, W) ¢+2an99+a{ﬁa’;+—;—} 9.  (3.8h)
A.1. Asymptotic solutions for ye(n,, ©), n, > 1

From figure 1 we see that W—e, W -0 and H >0 as p-—+c0. When W = ¢ and the
terms involving 2, W, W’ and H’ are dropped from (3.8b), (3.9) and (3.10), four
independent solutions satisfying the conditions at oo are

b, = 0"71{;1(0”7)~ Y =02,=0 =0, (A1
) 2_o?) K,
b, = ﬂKn(ﬂﬂ) Qz = 71(,3 0;7)7 (ﬂ”) ] (A 2)

¥, =9¢®, = (*—a?) D, +2naf2,, ©O,= O.‘

. o4 » .
D, = nk,(By). £2,= —77/%75”(/)’71)‘ |
¥ = G, = (f2—at) Dy +2na,. 6,=10.]

I
O
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7 a ,
D, = ﬁKn(ﬂﬂ)—mﬂﬂKn(ﬂﬂ)v Q,=0,
. (A4)
¥, =20, = 2%@47 0, = (F*—a®) K, (fn).

Here g is the root of a®+iak(e —c) with positive real part, and K, is the modified
Bessel function of order n. The general solution for = %, is of the form

4
(@.7.2,0)= X A,(D;, ¥,4;,0)), (A 5)
=1
where A, ..., A, arc constants to be determined.

A.2. Series solutions for ne|0, 9], 7, <€ 1

Power-series solutions to (3.8a,b)—(3.10) satisfying the conditions at # = 0 exist in
terms of 2. Though these may be found for all values of n, we shall restrict the
presentation to n = 1.

The base flow velocity and temperature W and H have series convergent for |y] < 1:

20
(I/VaH) = Z (I/V]’H])nzj,
j=0
where, for e = 0,

W= (—1Y(G+1), H;=(=1Y3(+1)({+2).

When ¢ # 0 the eoefficients W; and H; are determined numerically. On taking into
account the conditions (3.13), the series for @, ¥, 2 and & may be written

Pt

(D, ¥.2,0)= X (a;,b;.dy, b)) g2,
j=

where the differential equations yield recurrence relations for the coefficients in terms
ofa, ..., k.
Four independent solutions (@ s .Q O, i), J=1,..., 4, are gencrated by taking
=8y, by = 8y, dy = &5; and by = 847, wher(, d is the Kroncoker delta. The general
ﬁolutlon for 7 € 5, may then be written

4
j=1
where B,, ..., B, are constants to be determined.

A 3. Numerical integration from 5 to 9y, and from 5, to 1.,
Equations (3.8a,5)—(3.10) may be written in the equivalent form
=AY, (A7)
where A is a square matrix of order 8 and
Y=(D,0" V. ¥, 02,Q2.60.6),
with the prime denoting differentiation with respect to 7.

Using the series solutions from §A.2, (A 7) may be integrated from 7 to g, to give

4
Y=73 7%,
=1
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€ s Tm g Nom Nam
0 0.1 1.0 10.0 3 19
0.25 0.1 1.0 5.0 3 9
0.50 0.1 1.0 3.50 5 11

1.0 0.1 1.0 3.00 5 9

2.0 0.01 0.50 1.75 3 6

5.0 0.01 0.25 1.25 5 17

TaBLE 3. The values of 5, 7, and 4, for different e-values. N, and N, give the maximum number
of orthonormalizations in the intervals [y, 7] and [9,,, 7,] respectively.

and similarly, using the asymptotic solutions from §A.1 and integrating from 7, to

N gives
4

Y= A%,
=1
Here the constants 4; and B; are as in (A 5) and (A 6). Assuming continuity in ¥
at 7, yields the relation G(e, o, R, a, ¢c) = 0 for solvability. The secant method is then
used to determine the eigenvalue ¢ for given values of €, @ and R.

A.4. Orthonormalization

The local solutions for 5 €|y, 7,) are composed of terms of the form exp (+«,7) and
exp (+4,7), where, in general, |3,| > |a,|. Therefore when integrating from #, to %,
the exp (#7)-terms very soon dominate the other terms, giving dependent solutions.
To avoid this, the four solutions Y] are orthonormalized at equally spaced points 7,
Ns1s Nsgo -+-» Mm- Similar considerations apply for the integration from , to 5,,. In table
3 the maximum number of orthonormalization points in the calculations are
displayed ; the number depends on ¢, R and «.
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